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Synopsis 

An analysis is carried out to evaluate the effects of alternate surface boundary conditions on 
the predictions of our previously developed (Part I) pseudobinary diffusion model for membrane 
formation by the phase inversion process. Attention is addressed to a comparison of concentration 
profiles in the quenched film for a constant flux interface (CF) condition and a mass transfer rate 
(MT) interface condition. A numerical algorithm is developed to handle the MT condition based 
on an explicit, finite difference marching method. Comparison of concentration profiles with those 
obtained earlier for the CF boundary condition show that since results for both cases are very 
similar, either condition can be used in concentration profile calculations. Changes in bath 
conditions will mainly affect membrane formation through the changed solvent/nonsolvent flux 
ratio during quenching. 

INTRODUCTION 

The field of membrane science and technology has undergone an enormous 
growth since the discovery that asymmetric skinned structures can be formed 
by the so-called phase-inversion process involving casting a solution of a 
polymer in a solvent (or mixture of solvents) followed by quenching in a 
nonsolvent bath.' The widespread application of such membranes has gener- 
ated numerous studies on the conditions and possible mechanisms for the 
formation of the characteristic morphologies during and after phase 
inversion.2-8 Despite this high level of activity, however, relatively few 
attempts have been made to quantify and/or systematize the information in 
terms of models for the structure formation. Therefore, in a recent paperg (to 
be referred to as Part I) we presented a systematic modeling approach 
emphasizing both the thermodynamic and kinetic aspects of phase inversion 
during the quench period. A pseudobinary diffusion formalism was developed 
and used in conjunction with an analysis of the ternary phase diagram 
behavior of typical membrane forming systemdo to evaluate the phase sep- 
aration characteristics. The advantages, predictive power, and potential for 
further use of this approach were also discussed in detail. 

An important feature of the pseudobinary formalism is that the mixing rule 
decouples from the diffusion equations, thus allowing one to easily superpose 
composition paths on the ternary phase diagram and study these indepen- 
dently of the concentration development as a function of time and distance in 
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the film. As discussed in Part I, however, choice of the appropriate surface 
boundary condition for the latter calculation is one of the more complicated 
and controversial issues of the mass transfer m~deling.l'-'~ In this paper this 
aspect of the problem is discussed in more detail by assessing both the nature 
and degree of effect of alternate boundary conditions on the computed 
concentration profiles. In such a fashion one can also gain some feel for the 
importance of specific recipe conditions on the membrane formation char- 
acteristics. Likewise, since changes in the bath conditions (i.e., by stirring or 
introducing convective current effects) can affect both the surface boundary 
condition and the solvent-nonsolvent flux ratio k', a knowledge of one (e.g., 
BC effects) should enable determining the probable role of the other, thereby 
improving the predictive capacity of the pseudobinary model. Since control of 
the bath-side conditions is relatively easy, such information should also aid in 
the design of desired membrane structures. 

We begin with a brief discussion of the pseudobinary model and the 
associated alternate surface boundary conditions, followed by a detailed 
analysis of the concentration profiles. 

PSEUDOBINARY DIFFUSION EQUATIONS 

The pseudobinary diffusion model starts from the assumption that, due to 
the highly entangled nature of the casting solution, the polymer mass flux n3 
will be negligible compared to that of the nonsolvent, nl, or solvent, n,. Thus 
by defining liquid density p and mass fractions wi on a polymer-free basis, the 
nonsolvent flux equation becomes 

n, = -pDvW, + Wl(nl + n,) (1) 

In this expression, D is a concentration-dependent phenomenological diffusion 
coefficient and overbars are used to signify a polymer-free basis. Combination 
with the equations of continuity 

- -v -(nl + n,) 
a p  _ -  
at 

- -v enl 
a p ,  
at 
- -  (3) 

leads to the following equations for diffusion in the z direction (measured into 
the film relative to the bath interface position, z = 0): 

kpD awl  
- =  _ -  a' at :z( 1 + kw,  a,) (5) 

where k = k' - 1 and k' = -n,/n,. Since experimental  observation^^-^ have 
shown that the skin forms very quickly as a thin layer a t  the surface, our 
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calculations are necessarily restricted to short times and distances from the 
interface. Thus, taking k to be independent of position, the previous set of 
equations reduces to 

As mentioned, the question of appropriate initial and, most especially, 
boundary conditions needed to obtain a well-posed set of equations is to some 
extent a controversial aspect of the modeling. In the absence of an evapora- 
tion step, the first four of these would be straightforward and can be written 
as follows: 

p = pi at t = 0, z > 0 and as z + co for all t > 0 

wl=wli  a t t = O , z > O a n d a s z +  coforal l t>O 

where subscripts i refer to constant initial values. In most cases the initial 
nonsolvent composition would in fact be zero, i.e., Wli = 0. The question of 
alternate boundary conditions at the bath-film interface is considered in the 
next section. 

(7) 

(8 )  
- - 

SURFACE BOUNDARY CONDITIONS 

The quench period mass transfer model developed by Cohen et al." ne- 
glected mass transfer in the bath by assuming that the surface of the film 
instantaneously equilibrates with the bulk composition of the bath. Thus 
surface concentrations were taken as constant during the quench process. For 
a number of reasons this is a very problematic assumption. First of all, there 
are experimental observations that contradict this assumption. For some cases 
Cabassd5 observed accumulation of a solvent layer in the bath next to the film 
surface, and in other cases he observed a convective flow of solvent emanating 
from the polymer film. Both of these observations imply bath side mass 
transfer. In addition, a number of studies6s'5p16 have indicated that mass 
transfer on the bath side of the interface can have a strong influence on the 
structure of the formed membrane. For example, asymmetric structures can 
result when a nonsolvent liquid is used in the quench bath while, if the film is 
quenched in a nonsolvent vapor environment, the result is a completely 
porous membrane.16.17 Elimination of this assumption then leaves two equally 
plausible choices, either of which can be justified qualitatively on the basis of 
experimental observations for different membrane forming systems. The first 
choice (used exclusively in Part I) is that of constant flux at  the surface and is 
based on the above-mentioned s t ~ d y , ' ~  indicating that, for many systems, a 
fast, convective flow of solvent occurs into the bath resulting from the density 
difference between the solvent and nonsolvent. Thus the constant flux condi- 
tion (CF) can be written as 

n,J,=, = const (94  

n21z=o = const (9b) 

and 
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These relations thus imply that k’lz,o will be .constant, and, since, by 
assumption, k’(z )  = I Z ’ I , = ~ ,  one has that the flux ratio will be constant 
throughout the diffusion path. Hence eq. (6) can be integrated, subject to eqs. 
(7) and (8), to yield the following important relation between the liquid 
density and k 

(1 + kw,c)p, p =  
1 + kw, 

We note that eq. (lo), which has been obtained without having to solve eqs. 
(4) and (5), directly serves as the basis for construction of composition paths 
on the ternary phase diagram as given in Part I. 

The second and equally plausible surface condition is based on qualitative 
experimental observations reported by Strathmann and co-workers,16, l8 sug- 
gesting the existence of a mass transfer boundary layer on the bath side. This 
condition (referred to as MT) can be formulated as follows: 

where Pbath is the bath side liquid density, subscript b refers to bath side 
conditions, and the k i  are mass transfer coefficients. Using the fact that 
W1 + W2 = 1 leads to the following 

= k’lz=o = const k2 -n21z=o 

nllr=O kl 
- _  - 

Hence one finds that the flux ratio will be constant for this case as well and 
the relation between liquid density and flux ratio, i.e., eq. (lo), remains 
unchanged as do the predictions and conclusions based on the superposed 
ternary pr~fi les .~ Thus the differences between the two boundary conditions 
will be shown in the various component profiles as a function of time and 
position in the film. To assess this effect, one needs to solve the defining 
diffusion equation. 

CONCENTRATION PROFILES FOR 
MT BOUNDARY CONDITION 

Since the flux ratio 12 remains constant, eq. (10) can be substituted in eq. (4) 
to  yield the following diffusion equation for constant D = Do: 

1 awl a 
- -  

1 + kw, a t  

Combination of eqs. (l), (lo), and (l la) gives the following expression for the 
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surface boundary condition: 

where pi* = (1 + KW,, )&.  Together with eqs. (7) and (8), one then has a 
properly posed equation set to solve for the nonsolvent concentrations as a 
function of time and position. Introducing the transformation variable f = 

KG, / (~  + Kw,) - k ~ , J ( 1  + kwli), a dimensionless time, r = (K,olb)2t/Do 
and a dimensionless distance x = z / L o  with Lo being the initial film thick- 
ness, leads to the following equation set to be solved: 

where 

Although the mathematical definition of a differs here from that used for the 
constant flux condition in Part I, we note that its physical significance as a 
ratio of external to internal mass transfer resistances remains the same. 
Introduction of the MT condition produces an important mathematical conse- 
quence, however, in that since eq. (18) is nonlinear, analytical solution is no 
longer p ~ s s i b l e , ' ~ ~ ~ ~  necessitating use of a numerical integration scheme. 

SOLUTION SCHEME 

To handle the semi-infinite boundary condition, an explicit finite difference 
marching method has been selected. Use of an implicit (or semi-implicit) 
method would require assigning an arbitrary condition for infinity, and this 
position would have to be changed with progression in time. Likewise, the 
selection of such a condition needs to be checked by repeated calculation of 
concentration profiles at  the Same time value for different positions assumed 
as infinity, which makes the treatment more difficult. Since an explicit 
method is used, the + x  direction can be left open.21 Calculation of the 
concentration profile at  time t is simply terminated when f ( x ,  t )  becomes 
smaller than a preselected fixed value c without the need to know x ,  which is 
a function of time, beforehand. 

It was decided to employ a variable grid in which increments in space, Ax, 
depend on both time and position. The reason for choosing a time-dependent 
discretization is that, due to the developing concentration field with time, Ax 
can be increased at large times without jeopardizing the numerical accuracy. 
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Since concentration gradients will be much steeper near the film-bath inter- 
face, more grid points are necessary in that region. Thus Ax is also made 
position-dependent. Finite difference forms for the differential equation are 
given by the following: 

fj ,  n+ 1 = f j ,  n + rl( fj+ 1 ,  n - 2 f j ,  n + f j -  1, n) for 0 < j < J (19) 

(20) f;, n+ 1 = f j ,  n + r2( f j+  1 ,  - (1 + P d f ; ,  + ~1 f;- 1, n) for j = J 

for J < j I j ,  (21) 

where 

Ar 2 
r, = a'- and r, = rl 

( A x ) ,  P l (1  + P1) 

When the total grid point number for a specific time r (i.e., j , )  exceeds a 
preset limit M ,  the space increment is automatically increased as (Ax) ,+  = 

The surface condition is treated by introducing a fictitious grid point," and 
P2(AX). 

therefore surface concentration can be expressed (after manipulations) as 

for j = 0 (23)  

Thus the complete finite difference description of the system is given by eqs. 

For stability reasons rl needs to be smaller than 0.5, which in combination 
with the uniform initial condition leads to the realization that, regardless of 
how small the selected time increment is, for the first time step calculation 
(i.e., n = l), the number of grid points available for computation will be very 
small. Thus an asymptotic solution valid for very small times was used as an 
initial condition and the numerical solution algorithm was initiated at  r = Ar 
instead of at r = 0. To do this, a Taylor series expansion was first applied to 
the surface boundary condition retaining only the h t  term for small f 
values. The boundary condition can thus be expressed as 

(19)-(23). 

x = o  
(24)  

Since this is a linear condition, eq. (15) can be solved analytically, resulting 
in the following: 

f = kw,,(erfc( m) X - exp(hz + h2a2r) erfc 
X 
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Fig. 1. Polymer volume fraction profiles in the quenched film for two different boundary 

condition cases at different dimensionless times: (---) MT, (-) CF; k = 10.0. 

where 

The above expression, evaluated at 7 = AT, was then used to start up the 
numerical solution. The numerical algorithm and selections for values of the 
numerical parameters were first tested by using the constant flux boundary 
condition for which the complete analytical solution is known (given in Part 
I). Comparison of analytical and numerical results demonstrated the accuracy 
of our numerical method. 

RESULTS AND DISCUSSION 

To investigate effects of the surface boundary condition on concentration 
profiles, results obtained using CF boundary condition and M T  boundary 
condition are plotted together in Figures 1-6. 

The principal conclusion derived from such plots (as well as from the overall 
calculations) is that concentration profiles for CF and MT surface boundary 
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Fig. 6. Nonsolvent weight fraction (polymer-free) profile in the quenched film for two different 
boundary condition cases at different dimensionless times: (---) MT; (-) CF; k = 1.0. 

condition cases are very similar over a wide range of system parameter values 
(i.e., k ,  a, +3i, pz, etc.). Figures 1-3 show that, for small times, profiles are 
essentially identical and in the medium time range differences are small. As 
mentioned previously, the relevant range for our problem is that of short 
times and distances (restrictions in fact used in the construction of our 
mathematical formalism). Thus concentration profiles a t  small times (espe- 
cially portions of profiles that are next to the surface) are the meaningful ones 
for our discussion. Examination of the relevant figures, emphasizing these 
curves and curve parts, clearly shows the close agreement resulting from the 
two different boundary condition cases. To see any important difference 
between these two cases, concentration profiles a t  large times, as exemplified 
in Figure 4, have to be considered; however, this is not relevant to our 
discussion. 

Examination of Figures 3 and 5 shows that even when the MT solution 
begins to deviate from that for CF, the general shapes and characteristics of 
the profiles still remain similar. This is an important observation since it 
places the predictions concerning general membrane morphology and skin 
structure, made in Part I, on a more solid footing independent of the selection 
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of the surface boundary condition but a general characteristic of our model 
and of general membrane forming system. 

For the situations where MT results deviate from CF results, the entire 
curves move to lower concentration levels, as demonstrated by Figures 3 to 5. 
This is a rather surprising observation since it is expected that effects of 
different surface boundary conditions would propagate from the surface. 
However, we feel that this observation strengthens the arguments of the 
preceding paragraph in that since the entire curves shift while still maintain- 
ing the same general features (slopes, etc.) (and since we are more interested in 
the qualitative characteristics rather than exact values of dimensionless time 
and distance), then the surface boundary conditions will not significantly 
affect any predictions for membrane formation. A t  large times surface slopes 
for MT cases become smaller than those for CF cases. 

To see whether or not using a different surface boundary condition affects 
different concentration profiles to a different degree, an investigation of the 
relative effects of surface boundary conditions on W1 and +3 was made. 
Comparison of Figures 3 and 6 and examination of Figure 5 demonstrates that 
such effects are similar, both qualitatively and quantitatively. 

0.05 

0.04 

0.03 

9, 

0.02 

0.01 

9 

Fig. 7. Nonsolvent volume fraction profiles in the quenched film for the MT case for various 
flux ratios: (-) k = 1.0; (---) k = 10.0; T = 1 x 
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Examination of Figures 2 and 5 shows that differences between the con- 
centration profiles decrease with increasing flux ratio k. Thus one concludes 
that, for the high flux ratio range, concentration profile characteristics will be 
dominated mainly by the flux ratio. 

Up to this point, only polymer volume fraction profiles and nonsolvent mass 
fraction (on a polymer-free basis) profiles have been discussed. Examination of 
nonsolvent volume fraction profiles is also necessary and will be useful for 
structure predictions and for further studies at step c (Part I) of our system- 
atization. The analytical expression for the nonsolvent fraction profile for the 
CF case (given in the Part I) shows that it is independent of flux ratio. Figure 
7 shows that, for the MT case, although the +1 profile does depend on the 
value of the flux ratio, the effect is extremely small. Also, from this figure, it 
can be observed that general shapes and features of the +1 profiles are similar 
to those of the +3 profiles. 

CONCLUSIONS 

Based on the preceding discussion, some general useful conclusions can be 
reached concerning the effects and selections of surface boundary conditions. 
First of all i t  can be concluded that both the constant flux interface and mass 
transfer surface boundary condition expressions could be used in concentra- 
tion profile calculations and therefore for structure predictions. Therefore, 
there is no need to attempt to determine which one of those is operational for 
a specific system; selection of boundary condition could be merely based on 
mathematical convenience. 

Secondly, based on these calculations, we can conclude that any change 
made in conditions of the bath will affect membrane formation mainly 
through changing flux ratio values. This finding could be useful in prediction 
and even in design of new membrane structures. 
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